Sunday 15 October 2017

Moving Average Autoregressive


A RIMA significa Autoregressive Integrated Moving Average modelos. Univariante (vector único) ARIMA es una técnica de previsión que proyecta los valores futuros de una serie basada enteramente en su propia inercia. Su aplicación principal es en el área de pronósticos a corto plazo que requieren al menos 40 puntos de datos históricos. Funciona mejor cuando los datos muestran un patrón estable o consistente en el tiempo con una cantidad mínima de valores atípicos. A veces llamado Box-Jenkins (después de los autores originales), ARIMA suele ser superior a las técnicas de suavización exponencial cuando los datos son razonablemente largos y la correlación entre las observaciones pasadas es estable. Si los datos son cortos o muy volátiles, entonces algún método de suavizado puede funcionar mejor. Si usted no tiene por lo menos 38 puntos de datos, debe considerar algún otro método que ARIMA. El primer paso para aplicar la metodología ARIMA es verificar la estacionariedad. La estacionariedad implica que la serie permanece a un nivel bastante constante en el tiempo. Si existe una tendencia, como en la mayoría de las aplicaciones económicas o de negocios, sus datos NO son estacionarios. Los datos también deben mostrar una variación constante en sus fluctuaciones en el tiempo. Esto se ve fácilmente con una serie que es muy estacional y que crece a un ritmo más rápido. En tal caso, los altibajos en la estacionalidad se harán más dramáticos con el tiempo. Si no se cumplen estas condiciones de estacionariedad, no se pueden calcular muchos de los cálculos asociados con el proceso. Si un gráfico gráfico de los datos indica nonstationarity, entonces usted debe diferenciar la serie. La diferenciación es una excelente forma de transformar una serie no estacionaria en una serie estacionaria. Esto se hace restando la observación en el período actual a la anterior. Si esta transformación se realiza sólo una vez en una serie, se dice que los datos se han diferenciado primero. Este proceso esencialmente elimina la tendencia si su serie está creciendo a una tasa bastante constante. Si está creciendo a un ritmo creciente, puede aplicar el mismo procedimiento y diferenciar los datos de nuevo. Sus datos entonces serían segundos diferenciados. Las autocorrelaciones son valores numéricos que indican cómo una serie de datos se relaciona a sí misma con el tiempo. Más precisamente, mide cuán fuertemente están correlacionados los valores de datos en un número específico de períodos separados entre sí a lo largo del tiempo. El número de períodos separados se llama generalmente el retraso. Por ejemplo, una autocorrelación en el retardo 1 mide cómo los valores 1 período aparte están correlacionados entre sí a lo largo de la serie. Una autocorrelación en el retraso 2 mide cómo los datos dos períodos aparte están correlacionados a lo largo de la serie. Las autocorrelaciones pueden variar de 1 a -1. Un valor próximo a 1 indica una alta correlación positiva, mientras que un valor cercano a -1 implica una correlación negativa alta. Estas medidas se evalúan con mayor frecuencia a través de tramas gráficas llamadas correlagramas. Un correlagrama traza los valores de autocorrelación para una serie dada con diferentes retardos. Esto se conoce como la función de autocorrelación y es muy importante en el método ARIMA. La metodología ARIMA intenta describir los movimientos en una serie temporal estacionaria como una función de lo que se llaman parámetros de media móvil y autorregresiva. Estos parámetros se denominan parámetros AR (autoregessivos) y MA (medias móviles). Un modelo de AR con un solo parámetro se puede escribir como. X (t) A (1) X (t-1) E (t) donde X (t) serie temporal bajo investigación A (1) el parámetro autorregresivo de orden 1 X (t-1) (T) el término de error del modelo Esto simplemente significa que cualquier valor dado X (t) puede explicarse por alguna función de su valor anterior, X (t-1), más algún error aleatorio inexplicable, E (t). Si el valor estimado de A (1) fue de 0,30, entonces el valor actual de la serie estaría relacionado con 30 de su valor hace 1 período. Por supuesto, la serie podría estar relacionada con más de un valor pasado. Por ejemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Esto indica que el valor actual de la serie es una combinación de los dos valores inmediatamente anteriores, X (t-1) y X (t-2), más algún error aleatorio E (t). Nuestro modelo es ahora un modelo autorregresivo de orden 2. Modelos de media móvil: Un segundo tipo de modelo de Box-Jenkins se denomina modelo de media móvil. Aunque estos modelos parecen muy similares al modelo de AR, el concepto detrás de ellos es muy diferente. Los parámetros de la media móvil relacionan lo que sucede en el período t sólo con los errores aleatorios que ocurrieron en períodos de tiempo pasados, es decir, E (t-1), E (t-2), etc., en lugar de X (t-1), X T-2), (Xt-3) como en los enfoques autorregresivos. Un modelo de media móvil con un término MA puede escribirse como sigue. El término B (1) se denomina un MA de orden 1. El signo negativo delante del parámetro se utiliza para la convención solamente y se imprime generalmente La mayoría de los programas de ordenador. El modelo anterior simplemente dice que cualquier valor dado de X (t) está directamente relacionado solamente al error aleatorio en el período anterior, E (t-1), y al término de error actual, E (t). Como en el caso de los modelos autorregresivos, los modelos de media móvil pueden extenderse a estructuras de orden superior que abarcan diferentes combinaciones y longitudes móviles. La metodología ARIMA también permite la construcción de modelos que incorporen parámetros tanto de autorregresión como de media móvil. Estos modelos se refieren a menudo como modelos mixtos. Aunque esto hace que sea una herramienta de pronóstico más complicada, la estructura puede simular mejor la serie y producir un pronóstico más preciso. Los modelos puros implican que la estructura consiste solamente en los parámetros AR o MA - no ambos. Los modelos desarrollados por este enfoque usualmente se llaman modelos ARIMA porque usan una combinación de autoregresión (AR), integración (I), que se refiere al proceso inverso de diferenciación para producir las operaciones de predicción y de media móvil (MA). Un modelo de ARIMA se indica generalmente como ARIMA (p, d, q). Esto representa el orden de los componentes autorregresivos (p), el número de operadores de diferenciación (d) y el orden más alto del término medio móvil. Por ejemplo, ARIMA (2,1,1) significa que usted tiene un modelo autorregresivo de segundo orden con un componente de media móvil de primer orden cuya serie se ha diferenciado una vez para inducir la estacionariedad. Elegir la especificación correcta: El principal problema en el clásico Box-Jenkins es tratar de decidir qué especificación ARIMA utilizar-i. e. Cuántos AR y / o MA parámetros para incluir. Esto es lo que gran parte de Box-Jenkings 1976 se dedicó al proceso de identificación. Dependía de la eva - luación gráfica y numérica de las funciones de autocorrelación de la muestra y de autocorrelación parcial. Bueno, para sus modelos básicos, la tarea no es demasiado difícil. Cada uno tiene funciones de autocorrelación que se ven de cierta manera. Sin embargo, cuando se sube en complejidad, los patrones no se detectan tan fácilmente. Para hacer las cosas más difíciles, sus datos representan sólo una muestra del proceso subyacente. Esto significa que los errores de muestreo (valores atípicos, errores de medición, etc.) pueden distorsionar el proceso teórico de identificación. Por lo tanto, el modelo ARIMA tradicional es un arte más que una ciencia. Moving Average - MA BREAKING DOWN Promedio móvil - MA Como ejemplo de SMA, considere una garantía con los siguientes precios de cierre en 15 días: Semana 1 (5 días) 20, 22 24, 25, 23 Semana 2 (5 días) 26, 28, 26, 29, 27 Semana 3 (5 días) 28, 30, 27, 29, 28 Un MA de 10 días promediaría los precios de cierre de la primera 10 días como el primer punto de datos. El próximo punto de datos bajaría el precio más temprano, agregaría el precio el día 11 y tomaría el promedio, y así sucesivamente como se muestra a continuación. Como se mencionó anteriormente, las AMs se retrasan en la acción de los precios actuales porque se basan en precios pasados, mientras más largo sea el período de tiempo para la MA, mayor será el rezago. Por lo tanto, un MA de 200 días tendrá un grado mucho mayor de retraso que un MA de 20 días porque contiene precios durante los últimos 200 días. La longitud de la MA a utilizar depende de los objetivos comerciales, con MA más cortos utilizados para el comercio a corto plazo y de más largo plazo MA más adecuado para los inversores a largo plazo. El MA de 200 días es ampliamente seguido por inversores y comerciantes, con rupturas por encima y por debajo de este promedio móvil considerado como señales comerciales importantes. Las MA también imparten señales comerciales importantes por sí solas, o cuando dos medias se cruzan. Un aumento MA indica que la seguridad está en una tendencia alcista. Mientras que un MA decreciente indica que está en una tendencia bajista. Del mismo modo, el impulso ascendente se confirma con un cruce alcista. Que se produce cuando una MA a corto plazo cruza por encima de un MA a más largo plazo. MA.8.4 Modelos de media móvil En lugar de utilizar valores pasados ​​de la variable de pronóstico en una regresión, un modelo de media móvil utiliza errores de predicción pasados En un modelo de regresión. Y c e teta teta e dots theta e, donde et es ruido blanco. Nos referimos a esto como un modelo MA (q). Por supuesto, no observamos los valores de et, por lo que no es realmente regresión en el sentido usual. Observe que cada valor de yt puede considerarse como una media móvil ponderada de los últimos errores de pronóstico. Sin embargo, los modelos de media móvil no deben confundirse con el suavizado promedio móvil que discutimos en el Capítulo 6. Un modelo de media móvil se utiliza para pronosticar valores futuros mientras que el suavizado medio móvil se utiliza para estimar el ciclo de tendencias de valores pasados. Figura 8.6: Dos ejemplos de datos de modelos de media móvil con diferentes parámetros. A la izquierda: MA (1) con y t 20e t 0.8e t-1. Derecha: MA (2) con y t e t - e t-1 0.8e t-2. En ambos casos, e t es el ruido blanco normalmente distribuido con media cero y varianza uno. La Figura 8.6 muestra algunos datos de un modelo MA (1) y un modelo MA (2). Al cambiar los parámetros theta1, dots, thetaq, se obtienen diferentes patrones de series temporales. Al igual que con los modelos autorregresivos, la varianza del término de error y sólo cambiará la escala de la serie, no los patrones. Es posible escribir cualquier modelo estacionario AR (p) como un modelo MA (infty). Por ejemplo, usando la sustitución repetida, podemos demostrar esto para un modelo de AR (1): begin yt amp phi1y et amp phi1 (phi1y e) ph php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php php 1, el valor de phi1k se hará más pequeño a medida que k sea mayor. Así que finalmente obtenemos yt et phi1 e phi12 e phi13 e cdots, un proceso MA (infty). El resultado inverso se cumple si imponemos algunas limitaciones a los parámetros de MA. Entonces el modelo MA se llama inversible. Es decir, que podemos escribir cualquier proceso de MA (q) invertible como un proceso de AR (infty). Los modelos Invertibles no son simplemente para permitirnos convertir de modelos MA a modelos AR. También tienen algunas propiedades matemáticas que los hacen más fáciles de usar en la práctica. Las restricciones de invertibilidad son similares a las limitaciones de estacionariedad. Para un modelo MA (1): -1lttheta1lt1. Para un modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condiciones más complicadas se mantienen para qge3. Una vez más, R se encargará de estas restricciones al estimar los modelos.2.1 Modelos de media móvil (modelos MA) Los modelos de series de tiempo conocidos como modelos ARIMA pueden incluir términos autorregresivos y / o términos de media móvil. En la semana 1, aprendimos un término autorregresivo en un modelo de series de tiempo para la variable x t es un valor retrasado de x t. Por ejemplo, un término autorregresivo de retardo 1 es x t-1 (multiplicado por un coeficiente). Esta lección define los términos del promedio móvil. Un término medio móvil en un modelo de serie temporal es un error pasado (multiplicado por un coeficiente). Dejamos (wt desbordamiento N (0, sigma2w)), lo que significa que los w t son idéntica, independientemente distribuidos, cada uno con una distribución normal que tiene la media 0 y la misma varianza. El modelo de media móvil de primer orden, denotado por MA (1) es (xt mu wt theta1w) El modelo de media móvil de segundo orden, denotado por MA (2) es (xt mu wt theta1w theta2w) , Denotado por MA (q) es (xt mu wt theta1w theta2w puntos thetaqw) Nota. Muchos libros de texto y programas de software definen el modelo con signos negativos antes de los términos. Esto no cambia las propiedades teóricas generales del modelo, aunque sí cambia los signos algebraicos de los valores estimados de los coeficientes y los términos (no cuadrados) en las fórmulas para las ACF y las varianzas. Usted necesita comprobar su software para verificar si los signos negativos o positivos se han utilizado con el fin de escribir correctamente el modelo estimado. R utiliza signos positivos en su modelo subyacente, como lo hacemos aquí. Propiedades teóricas de una serie temporal con un modelo MA (1) Tenga en cuenta que el único valor distinto de cero en el ACF teórico es para el retardo 1. Todas las demás autocorrelaciones son 0. Por lo tanto, una ACF de muestra con una autocorrelación significativa sólo con el retardo 1 es un indicador de un posible modelo MA (1). Para los estudiantes interesados, las pruebas de estas propiedades son un apéndice a este folleto. Ejemplo 1 Supongamos que un modelo MA (1) es x t 10 w t .7 w t-1. Donde (wt overset N (0,1)). Así, el coeficiente 1 0,7. El ACF teórico se da por un diagrama de esta ACF sigue. La gráfica que se muestra es la ACF teórica para un MA (1) con 1 0,7. En la práctica, una muestra no suele proporcionar un patrón tan claro. Utilizando R, simulamos n 100 valores de muestra utilizando el modelo x t 10 w t .7 w t-1 donde w t iid N (0,1). Para esta simulación, sigue un diagrama de series de tiempo de los datos de la muestra. No podemos decir mucho de esta trama. A continuación se muestra el ACF de muestra para los datos simulados. Observamos un pico en el retraso 1 seguido por valores generalmente no significativos para los retrasos de 1. Obsérvese que la muestra ACF no coincide con el patrón teórico del MA subyacente (1), que es que todas las autocorrelaciones para los retrasos de 1 serán 0.Una muestra diferente tendría una ACF de muestra ligeramente diferente mostrada abajo, pero probablemente tendría las mismas características amplias. Propiedades Terapéuticas de una Serie de Tiempo con un Modelo MA (2) Para el modelo MA (2), las propiedades teóricas son las siguientes: Obsérvese que los únicos valores distintos de cero en la ACF teórica son para los retornos 1 y 2. Las autocorrelaciones para retardos mayores son 0 . Por lo tanto, una muestra de ACF con autocorrelaciones significativas en los intervalos 1 y 2, pero autocorrelaciones no significativas para retardos mayores, indica un posible modelo MA (2). Iid N (0,1). Los coeficientes son 1 0,5 y 2 0,3. Dado que se trata de una MA (2), la ACF teórica tendrá valores distintos de cero sólo en los retornos 1 y 2. Los valores de las dos autocorrelaciones distintas de cero son: Un gráfico del ACF teórico sigue. Como casi siempre es el caso, los datos de la muestra no se comportarán tan perfectamente como la teoría. Se simularon 150 valores de muestra para el modelo x t 10 w t .5 w t-1 .3 w t-2. Donde w t iid N (0,1). A continuación se muestra el gráfico de la serie de tiempo de los datos. Al igual que con el gráfico de la serie de tiempo para los datos de la muestra MA (1), no se puede decir mucho de ella. A continuación se muestra el ACF de muestra para los datos simulados. El patrón es típico para situaciones donde un modelo MA (2) puede ser útil. Hay dos picos estadísticamente significativos en los intervalos 1 y 2, seguidos de valores no significativos para otros desfases. Tenga en cuenta que debido al error de muestreo, la muestra ACF no coincide exactamente con el patrón teórico. ACF para modelos MA (q) Una propiedad de los modelos MA (q) en general es que hay autocorrelaciones no nulas para los primeros q retrasos y autocorrelaciones 0 para todos los retrasos gt q. No unicidad de la conexión entre los valores de 1 y (rho1) en MA (1) Modelo. En el modelo MA (1), para cualquier valor de 1. El 1/1 recíproco da el mismo valor para. Por ejemplo, use 0.5 para 1. Y luego utilice 1 / (0,5) 2 para 1. Youll get (rho1) 0.4 en ambos casos. Para satisfacer una restricción teórica llamada invertibilidad. Limitamos los modelos MA (1) a tener valores con valor absoluto menor que 1. En el ejemplo dado, 1 0,5 será un valor de parámetro permisible, mientras que 1 1 / 0,5 2 no. Invertibilidad de los modelos MA Se dice que un modelo MA es invertible si es algebraicamente equivalente a un modelo de orden infinito convergente. Al converger, queremos decir que los coeficientes de AR disminuyen a 0 a medida que retrocedemos en el tiempo. Invertibilidad es una restricción programada en el software de la serie de tiempo usado para estimar los coeficientes de modelos con términos de MA. No es algo que buscamos en el análisis de datos. En el apéndice se proporciona información adicional sobre la restricción de la invertibilidad para los modelos MA (1). Nota de Teoría Avanzada. Para un modelo MA (q) con un ACF especificado, sólo hay un modelo invertible. La condición necesaria para la invertibilidad es que los coeficientes tienen valores tales que la ecuación 1- 1 y-. - q y q 0 tiene soluciones para y que caen fuera del círculo unitario. Código R para los Ejemplos En el Ejemplo 1, se representó la ACF teórica del modelo x $ _ {t} $ w $ _ {t} $. 7w t - 1. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R usados ​​para trazar el ACF teórico fueron: acfma1ARMAacf (mac (0.7), lag. max10) 10 retardos de ACF para MA (1) con theta1 0.7 lags0: 10 crea una variable llamada lags que va de 0 a 10. plot Abline (h0) añade un eje horizontal al diagrama El primer comando determina el ACF y lo almacena en un objeto (a0) Llamado acfma1 (nuestra elección de nombre). El comando plot (el 3er comando) traza retrasos en comparación con los valores ACF para los retornos 1 a 10. El parámetro ylab etiqueta el eje y y el parámetro principal coloca un título en la gráfica. Para ver los valores numéricos de la ACF simplemente utilice el comando acfma1. La simulación y las parcelas se realizaron con los siguientes comandos. Xcarzim. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 agrega 10 para hacer la media 10. La simulación predeterminada significa 0. plot (x, typeb, mainSimulated MA (1) data) (X, xlimc (1,10), mainACF para datos de muestra simulados) En el Ejemplo 2, se representó el ACF teórico del modelo xt 10 wt. 5 w t-1 .3 w t-2. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R utilizados fueron acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 trama (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) con theta1 0,5, (X, typeb, principal serie MA simulado) acf (x, xlimc (1,10), x2) (1) Para los estudiantes interesados, aquí hay pruebas de las propiedades teóricas del modelo MA (1). Cuando x 1, la expresión anterior 1 w 2. Para cualquier h 2, la expresión anterior 0 (x) La razón es que, por definición de independencia del peso. E (w k w j) 0 para cualquier k j. Además, debido a que w t tiene una media 0, E (w j w j) E (w j 2) w 2. Para una serie de tiempo, aplique este resultado para obtener la ACF indicada anteriormente. Un modelo inversible MA es uno que puede ser escrito como un modelo de orden infinito AR que converge para que los coeficientes AR convergen a 0 a medida que avanzamos infinitamente en el tiempo. Bien demostrar invertibilidad para el modelo MA (1). A continuación, sustituimos la relación (2) por wt-1 en la ecuación (1) (3) (zt wt theta1 (z-theta1w) wt theta1z - theta2w) En el momento t-2. La ecuación (2) es entonces sustituimos la relación (4) por w t-2 en la ecuación (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Si continuáramos Sin embargo, si 1 1, los coeficientes que multiplican los retrasos de z aumentarán (infinitamente) en tamaño a medida que retrocedemos hacia atrás hora. Para evitar esto, necesitamos 1 lt1. Esta es la condición para un modelo de MA (1) invertible. Infinite Order MA model En la semana 3, veamos bien que un modelo AR (1) puede convertirse en un modelo de orden infinito MA: (xt - mu wt phi1w phi21w puntos phik1 w dots sum phij1w) Esta suma de términos de ruido blanco pasado es conocida Como la representación causal de un AR (1). En otras palabras, x t es un tipo especial de MA con un número infinito de términos remontándose en el tiempo. Esto se llama un orden infinito MA o MA (). Una orden finita MA es un orden infinito AR y cualquier orden finito AR es un orden infinito MA. Recordemos en la semana 1, observamos que un requisito para un AR estacionario (1) es que 1 lt1. Vamos a calcular el Var (x t) utilizando la representación causal. Este último paso utiliza un hecho básico sobre series geométricas que requiere (phi1lt1) de lo contrario la serie diverge. NavigationDocumentation es la media incondicional del proceso, y x03C8 (L) es un polinomio de operador de lag, racional, de grado infinito, (1 x03C8 1 L x03C8 2 L 2 x2026). Nota: La propiedad Constant de un objeto modelo arima corresponde a c. Y no la media incondicional 956. Por la descomposición de Wolds 1. La ecuación 5-12 corresponde a un proceso estocástico estacionario siempre que los coeficientes x03C8 i sean absolutamente sumables. Este es el caso cuando el polinomio AR, x03D5 (L). es estable . Lo que significa que todas sus raíces están fuera del círculo unitario. Adicionalmente, el proceso es causal siempre que el polinomio MA sea invertible. Lo que significa que todas sus raíces están fuera del círculo unitario. Econometrics Toolbox refuerza la estabilidad y la invertibilidad de los procesos ARMA. Cuando especifique un modelo ARMA utilizando arima. Se obtiene un error si se introducen coeficientes que no corresponden a un polinomio AR estable oa un polinomio MA inversible. De forma similar, la estimación impone restricciones de estacionariedad e invertibilidad durante la estimación. Referencias 1 Wold, H. Un estudio en el análisis de series de tiempo estacionarias. Uppsala, Suecia: Almqvist amp Wiksell, 1938. Seleccione su país

No comments:

Post a Comment